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The First 1000 Decimal Digits of Pi

3.

1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273
7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094
3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912
9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132
0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235
4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859
5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989



The First 1000 Hexadecimal (Base 16) Digits of Pi

3.

243f6a8885a308d313198a2e0370734424093822299f31d0082efa98ec4e6c89452821e638d01377beb466cf34e90c6ccO
ac29b7c97c50dd3£84d5b5b54709179216d5d98979fb1bd1310ba698dfb5ac2ffd72dbd01adfb7b8elafed6a267e96ba’c
9045£12c7£9924a19947b3916cf70801£2e2858efc16636920d4871574e69a458fea3f4933d7e0d95748£728eb658718bcd
5882154aee7bb4a41dc25a59b59¢c30d5392a£26013c5d1b023286085£0cad17918b8db38ef8e79dcb0603a180e6c9e0e8b
b01e8a3ed71577c1bd314b2778af2fdab5605c60e65525£3aa55ab945748986263e8144055ca396a2aabl0b6bdccbc3411
41e8cealb486af7c72e993b3ee1411636fbc2a2ba9cbbd741831f6cebc3e169b87931eafdb6bal336c24cfbc7a3253812895
86773b8£48986b4bb9afc4bfe81b6628219361d809ccfb21a991487cac605decB8032e£845d5de98575b1dc262302eb651b
8823893e81d396accb0£6d6££383f442392e0b4482a484200469c8f04a9¢1f9b5e21c66842£6e96c9a670c9c61abd388£0
6a51a0d2d8542£68960fa728ab5133a36eef0b6c137a3bedbaldbf0507efb2a98a1£1651d39af017666cab93e82430e888¢c

€e8619456£9fb47d84a5c33b8bbebeec06£75d885¢c12073401a449f56c16aa64ed3aa62363f77061bfedf72429b023d37d0

On-line tool searches for any pattern in the first four billion digits of 7
http://pi.nersc.gov



Normality

The real number « is normal to base b if every sequence of m digits in the
base-b expansion of o appears with limiting frequency b=,

Almost all real numbers are normal (from measure theory). Widely believed to
be normal base b for all bases b:

o T and e.

o log 2 and /2.

e The golden mean 7 = (1 ++/5)/2.
e [yvery irrational algebraic number.

e Many other ‘natural” irrational constants.

But there are nmo proots for any of these constants, for any base. Normality
proofs exist only for handtul of artifically constructed constants, such as Cham-

pernowne’s number: 0.1234567891011121314...



Integer Relation Detection

Given a real or complex vector x = (x1, 29, -+, x,) an integer relation (IR)
algorithm seeks integers a;, not all zero, such that

axr] + asxs + -+ ayr, = 0

to within the available numerical accuracy:.

e Original IR algorithm found in 1977 by Helaman Ferguson and Rodney
Forcade.

e Current state of art: Ferguson's “PSLQ)" algorithm — recently named one of
ten “algorithms of the century” by Computing in Science and Engineering.

e Very high numeric precision (hundreds or thousands of digits) must be em-
ployed in integer relation calculations.



Applications of PSLQ: Recognizing Numeric Constants

If a is algebraic of degree n, the polynomial satisfied by a can be found by

computing the vector (1, a,a?, -+, a") to high precision, and then applying

PSLQ).
Example:

Let By = 3.54409035955 - - - be the third bifurcation point of the logistic map
rri1 = rxi(l — xp). In other words, Bj is the smallest r such that successive
iterates x; exhibit eight-way periodicity instead of four-way periodicity.

Computations using a predecessor algorithm to PSL() found that Bjs is a root
the polynomial

0 = 4913 + 21082 — 604> — 977t 4+ 87 4+ 4445 + 392¢7 — 1935 — 40¢° + 4810 — 12411 4 412

Recently a PSLQ) program found that o = — By(By — 2) satisfies a 120-degree
polynomial, so that By satisfies a 240-degree polynomial.



Applications of PSLQ: Euler Sums

Let ¢(¢) = =52, 5" be the Riemann zeta function, and Li,(x) = 252, 2/5 " the
polylogarithm function. The following were found using PSL() computations:
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Applications of PSLQ: Apery Sums

It has been known for some time, through the research of Apery, that

2) H”Mwmmﬁwwm v
() = wwm 5

These results have led many to suggest that

1
@A\Sv - \anUQ Ln Am\wv“

for n > 4, might be a simple constant. It has now been shown that S(n) can

be expressed in terms of the Riemann zeta function {(n) and Clausen’s function
M (a,b). A sample evaluation is

8 8 13921
S(9) = 7 [2M(7.1) + SM(5,3) + SC2)IMG,1)| - =)
6211 8101 331
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Ten Tetrahedral Cases f
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Peter Borwein’s Observation on the Binary Digits of log 2

In 1995, Peter Borwein observed that an individual binary digit of log 2 can be
calculated by using a very simple algorithm:

Let {-} denote the fractional part. Then we can write

{20g 2} = T& 3 MW — WOU ﬁ
| k2F =1 k

d M&Iw 50 M&Iw
— . S
?H k W ?M%i k W

d 279k mod k oo 20—k
=% NI

h=dy1 K

2% mod k can be very rapidly evaluated using the binary

algorithm for exponentiation performed modulo &.

e The numerators

e Only a few terms of the second summation need be evaluated.

e All computations can be done with ordinary 64-bit floating-point arithmetic.

10



A More General Result

Any constant a given by a formula of the type

_ x plk)
bk

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) has the rapid individual digit computation property.

Is there a formula of this type for 77 None was known in 1995.

11



The BBP Formula for «

By applying DHB’s PSL(Q) computer program to set of computed constants for
which formulas of this type were known, with the numerical value of 7 appended,
Simon Plouffe found this formula for

x 1 A 4 2 1 1 v

= Sk+1 8k+d4 8k+5 8k+6

=0 16F

Question: Why wasn't this formula discovered 250 years ago?

12



Proof of the BBP Pi Formula

We can write

12wl de /3 . 1 1
\o\ \o\ Hm\i‘u H&H _ . MU

1 — 28 k=0 2712 k=0 H@\Am\a |_|uv
Thus
00 1 4 2 1 1
E 16 A%i |%i|%+m|%+@v
1VZ, A2 — 8aP — 4422t — 82°) dw

= 1 _ 8

1604 =2y —yt =) dy

B \o 16 —y

_ \H 16(y — 1) dy
’ @M|wxw|§+wv
_ \H 4y dy \ (4y — 8) dy
0 y2—2) 0 42 —2y42
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The BBP Algorithm for Computing Individual Hex Digits of Pi

Let S be the first of the four sums in the formula for «.

(16"S)) mod 1 = |3 070 o1 = (52 2070 g 1Y
mo = — | MO = NPT —— | 1110
! r=0 8k + 1 =08k +1 118k +1
n 16"% mod 8k + 1 < 16" F
= + | mod1
k=0 8k + 1 wnwui 8k +1

1. Compute each numerator of each term in the first sum using the binary algorithm for
exponentiation, reducing each product modulo 8% + 1.

Divide each numerator by its respective denominator 8% + 1.
Sum the terms of the first series, discarding integer parts.
Compute the second sum (just a few terms are needed).

Add the two sum results, again discarding the integer part.

Repeat for Sy, Sy, S3, Sy, and calculate 457 — 25, — S5 — 5;.

L S o R

The resulting fraction, when expressed in hexadecimal format, gives the first few hex digits
of m beginning at position n + 1.

Ordinary 64-bit or 128-bit floating-point arithmetic suffices for these operations — multiple
precision arithmetic software is not required.

14



Some Computational Results

Position

Hex Digits of 7

Starting at Position

10°

107

108

10?

FQS

Ho:

1.25 x 1012
2.5 x 1014

26C65E52CB4593
17AF5863EFED8D
ECB840E21926EC
85895585A0428B
921C73C6838FB2
9C381872D27596
07E45733CC7908B
E6216B0O69CB6C1

[1] Babrice Bellard, France, 1999
2] Colin Percival, Canada, 2000

15




Are There BBP-Type Formulas for Pi in Other Bases?

Jonathan Borwein, David Borwein and William Galway have now shown that
there are no formulas of the type

_x plk)
T S k)

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k), except for b = 2" for some integer r.

Thus 16 can be thought of as the "natural” base for 7.

16



Some Other Constants with Base 2 BBP-Type Formulas

log 3

log 7

log*

72 — 6log*
T3

3
108
W
3
DO
7
_|_
=

300 1 [ 2 1
Mmmﬂﬂ%i m\iﬂwv
1 1 144 216 72 54 9
8264 \(6h+1)2  (6h+2)2  (6k+3)>  (Gk+42 ' (6k+5)
1 o 1 16 40 8 28
6 5 16° 8k +1)2 (8k4+2)2 (8k+3)2 (8k—+4)?

1 10 2 3
|@i%|@i%+@i%|@i%

1
12y > o
9 s 1 ( 16 8 2 1
W?é%A%i|%+w|%i|%+mv
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An Arctan Formula

- 3 L& 1 A 524288 393216 491520 | 163840
an |- = — —
5 21T [ 2022k \40k +2 40k +4 40k +5 ' 40k +8
| 32768 24576 5120 10240 2048
40k +10 40k +12 © 40k +15 ~ 40k +16 = 40k + 18
1024 640 480 128 96
+ + + + -
40k +20 40k +24 40k +25 40k +26 40k + 28
Lo 8 5 6 v
40k +32 40k +34 40k 435 40k + 36

Similar formulas have been found for arctans of numerous other rational

arguments.
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Some Base 3 BBP-Type Formulas

log2 = 2 A ! + ! v
27 =0 81% \4k +1 = 4k +3
1
= L0 —)
, 2 x 1 243 405 81 27
T rE o \(12k 12T (12k £ 22 (12k £ 4?2 (12k +5)
72 9 9 5 1

T2k 162 (12k+ 7 (12482  (12k+10) | (12k + 11)°

V3 < 1 3 1
6v3tan~' || = A v
V3 tan 7 Zom 31 T3t
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A Base 5 BBP-Type Formula

25 Q%Am??\&a o0 HA 5 1 v

— ] — +
2 51256 57+ 55 Z 5k 5k +2 Bk 43

Two Base 10 BBP-Type Formulas

9 x 1
u(8) - -t

10 =1 k10
# A:::::v oy 10° N 107 N
(@) = .
5\ 387420489 Z0 1008 \ 10k 1 7 10k + 2

20
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A Connection Between BBP-Type Formulas and Normality

Theorem: The BBP-type constant

_ x plk)
T bk

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) is normal base b if and only if the sequence z¢ = 0, and
x, = |bxr,_1 |_|% mod 1
q(n)

is equidistributed in the unit interval.

Proof Sketch: Let o, be the base-b expansion of a after the n-th digit.
Following the BBP approach, we can write

= A@Q:H + MMMWv mod1l +E,

where [, goes to zero.
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Two Examples

1. Let zg = 0, and
1
T, = Aw&zL + v mod 1
n
Is (x,,) equidistributed in [0, 1)?
2. Let g = 0 and

120n2 — 89n + 16
512n* — 1024n3 + 712n2 — 206n + 21

Is (x,,) equidistributed in [0, 1)?

r, = |16x,—1 +

mod 1

If answer to Question 1 is “yes”, then log 2 is normal to base 2.

If answer to Question 2 is “yes”, then 7 is normal to base 16 (and hence to base
2 also).

22



Hypothesis A

Denote by r,, = p(n)/q(n) a rational-polynomial function, 0 < deg(p) < deg(q).
Let b be an integer, b > 2 and set xy = 0. Then the sequence

r, = (bxr,_1+r,) modl

either has a finite attractor or is equidistributed in [0, 1).

Theorem: Assuming Hypothesis A, then any constant a given by a formula
of the form

= plk)
N

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) is either normal base b or rational.

23



A Surprising Empirical Result

Recall the iteration associated with 7: Let ¢y = 0 and

" N 120n2 — 89n + 16 1
T, = Ty mo
E s 19nt — 102403 + 71202 — 206n + 21

Let y,, be the integer sequence defined as the index of the 16 subintervals of the
unit interval where x,, lies, i.e. y, = |16x;|. Then

Conjecture: The sequence (y,,) is precisely the hexadecimal expansion of 7.

This has been verified by computer to 100,000 places.
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A Class of Provably Normal Constants

Using the BBP approach, Richard Crandall and DHDB have now proven normal-
ity for a class of constants, the simplest instance of which is

o 1
@23 = \AMHUH 3h93F
= (0.041883680831502985071252898624571682426096 . . .19

— 0.0ABSE38F634BDA12F684BF35BA731948BOFCDOESEOD . . .15.

a3 was actually proven normal base 2 in a little-known paper by Stoneham in
1977. Crandall and DHB proved normality and transcendence for an uncount-
ably infinite class that includes as 3:

o~ 1
Q3(r) = \WH k93k 41y

where 7} is the k-th bit in the binary expansion of r € (0, 1).

These constants also possess the rapid individual digit computation property.
The googol-th binary digit of s 3 1s zero.

25



The Sequence Associated with as 3.

Let zop = 0, and define

T, = (2x,_1) mod 1 for n # 3"
= (22,1 + 1/n) mod 1 for n = 3"

The sequence (x,,) is merely the concatenation of primitive linear congruential
pseudorandom sequences, each of length 2 - 3*:

0, repeated 3 times,

., repeated 3 times,

: ., repeated 3 times,

Ol = Wl
O | oo (OSH I\

NeR

1
w©g

O | Ot

!
J ©w
13 26 25 23 19 11 22 1v v 14 1 2 4 & 16 5 10 20
277 277 277 277 27 277 270 277 277 277 277 270 27 277 27 277 27 2T

repeated 3 times, etc.

26



New Results for Irrational Algebraic Numbers

Theorem A: Let B, (a) be the number of ones in the binary expansion of a.
Then for any irrational algebraic number o,

B,(0)/n
W fog, ()/n =

Theorem B: If « is the square root of an integer or rational number, then for
some constant C'

lim inf Bu(a v\3 > 1

NG

This result can be extended to the largest real root of an m-th degree integer-
coefficient polynomial, where y/n is replaced with nt/m.

27



For Full Details

e David H. Bailey, Peter B. Borwein and Simon Ploufte, “On The Rapid Com-
putation of Various Polylogarithmic Constants,” Mathematics of Compu-
tation, vol. 66, no. 218, 1997, pp. 903-913.

e David H. Bailey, “A Compendium of BBP-Type Formulas,” 2002.

e David H. Bailey and Richard E. Crandall, “On the Random Character
of Fundamental Constant Expansions,” Experimental Mathematics, June
2001.

e David H. Bailey and Richard E. Crandall, “Random Generators and Normal
Numbers,” 2002.

These are available at:
http://www.nersc.gov/“dhbailey/dhbpapers
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